A Newton interpolation based predictor–corrector numerical method for fractional differential equations with an activator–inhibitor case study

نویسندگان

چکیده

This paper presents a new predictor–corrector numerical scheme suitable for fractional differential equations. An improved explicit Atangana–Seda formula is obtained by considering the neglected terms and used as predictor stage of proposed method. Numerical formulas are presented that approximate classical first derivative well Caputo, Caputo–Fabrizio Atangana–Baleanu derivatives. Simulation results to assess approximation error method various In addition, case study considered where obtain solutions Gierer–Meinhardt activator–inhibitor model with aim assessing system’s dynamics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Meshless Method for Numerical Solution of Fractional Differential Equations

In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...

متن کامل

A Numerical Method for Solving Fuzzy Differential Equations With Fractional Order

In this paper we present a numerical method for fuzzy differential equation of fractional order under gH-fractional Caputo differentiability. The main idea of this method is to approximate the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and explicit method as predictor. This method is tested on numerical examples.

متن کامل

A numerical method for solving delay-fractional differential and integro-differential equations

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A conver...

متن کامل

a meshless method for numerical solution of fractional differential equations

in this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. we approximate the exact solution by use of radial basis function(rbf) collocation method. this techniqueplays an important role to reduce a fractional dierential equation to a system of equations. the numerical results demonstrate the accuracy and ability of this me...

متن کامل

An approximate method for solving fractional system differential equations

IIn this research work, we have shown that it is possible to use fuzzy transform method (FTM) for the estimate solution of fractional system differential equations (FSDEs). In numerical methods, in order to estimate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics and Computers in Simulation

سال: 2021

ISSN: ['0378-4754', '1872-7166']

DOI: https://doi.org/10.1016/j.matcom.2021.03.009